
Journal of Fluids and Structures (2002) 16(1), 53}70
doi:10.1006/j#s.2001.0409, available online at http://www.idealibrary.com on

0

INITIALLY TENSIONED ORTHOTROPIC
CYLINDRICAL SHELLS CONVEYING FLUID:

A VIBRATION ANALYSIS

Y. L. ZHANG

Department of Chemical Engineering & Chemical Technology
Imperial College of Science, Technology and Medicine

Prince Consort Road, London SW7 2BY, U.K.

J. M. REESE

Department of Mechanical Engineering, King+s College London
Strand, London WC2R 2LS, U.K.

AND

D. G. GORMAN

Department of Mechanical Engineering, University of Strathclyde
James Weir Building, Montrose Street, Glasgow G1 XXJ, U.K.

(Received 28 July 2000, and in "nal form 6 June 2001)

A linear analysis of the vibratory behaviour of initially tensioned orthotropic circular cylin-
drical shells conveying a compressible inviscid #uid is presented. The model is based on the
three-dimensional nonlinear theory of elasticity and the Eulerian equations. A nonlinear
strain}displacement relationship is employed to derive the geometric sti!ness matrix due to
initial stresses and hydrostatic pressures. Frequency-dependent #uid mass, damping and
sti!ness matrices associated with inertia, Coriolis and centrifugal forces, respectively, are
derived through the #uid}structure coupling condition. The resulting equation governing the
vibration of #uid-conveying shells is solved by the "nite element method. The free vibration of
initially tensioned orthotropic cylindrical shells conveying #uid is investigated; numerical
examples are given and discussed. ( 2002 Academic Press
1. INTRODUCTION

NUMEROUS PAPERS ON THE DYNAMIC BEHAVIOUR of cylindrical shells conveying #uid have been
published, particularly for shells made of isotropic materials [e.g., PamKdoussis & Mateescu
(1987)]; an excellent review is given by Chen (1987). In examining the dynamics of #uid-
conveying shells, it is important to be able to estimate natural frequencies and to establish
the critical #ow velocity at which large displacements develop. PamKdoussis & Denise (1972)
theoretically accounted for, and experimentally con"rmed, the phenomenon that thin
isotropic cylindrical shells conveying #uid, either cantilevered or clamped at both ends, lose
stability by #utter when the internal #ow velocity exceeds a certain critical value. Weaver
& Unny (1973) investigated the stability of a #uid-conveying isotropic cylinder, simply
supported at both ends. An experimental study of annular-#ow-induced instabilities of
889}9746/02/010053#18 $35.00/0 ( 2002 Academic Press
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cylindrical shells was completed by Chebair et al. (1989), who investigated the e!ect of #ow
velocity on the natural frequency of a cylindrical shell within a coaxial rigid cylindrical pipe,
and thereby predicted that inner pressurization of the shell stabilizes the system. However,
with increasing use of composite materials (due to their light weight and high speci"c
strength) more and more attention is now being paid to orthotropic cylindrical shells
(Sharma et al. 1996; Ramasamy & Ganesan 1999), but, to the authors' knowledge, there has
been no work reported on the vibration of initially tensioned orthotropic shells conveying
#uid.

PamKdoussis et al. (1985) investigated the stability of axially stressed isotropic coaxial
cylindrical shells with internal and annular #ow. The e!ect of viscous forces, which were
determined by means of upstream pressurization of the #ow and skin friction on the shell
surfaces, was also studied. Jain (1974) investigated the dynamic problems of #uid-"lled
orthotropic cylindrical shells. Theoretical solutions of the free vibrations of orthotropic
cylindrical shells conveying #uid have also been obtained with the use of the Ritz varia-
tional method and potential #ow by using Bessel functions (Shang & Lei 1988). The exact
solution of nonaxisymmetric free vibrations of simply supported orthotropic cylindrical
shells containing #uid has previously been derived by using displacement separation
and orthogonal series expansion (Chen et al. 1997). Sharma et al. (1998) also developed an
analytical solution of the free-vibration response of multilayered orthotropic #uid-"lled
circular cylindrical shells by using the theory of thin shells and potential #ow theory.
However, most of these investigations were con"ned to orthotropic shells containing
quiescent or #owing #uid (Chang & Chiou 1995) in which the solution for the #uid
domain is obtained as a potential #ow by using Bessel functions. Bradford & Dong (1978)
illustrated the in#uence of axial prestresses on the free vibration of a three-layer
composite and a sandwich cylinder. Sivadas (1995) analysed the e!ect of prestresses
and internal/external pressures on the natural frequencies of prestressed thick circular
conical composite shells. Lakis & Selmane (1997) conducted a hybrid-"nite-element analy-
sis of the free vibration of anisotropic cylindrical shells subjected to a #owing #uid by using
the Sanders theory of thin shells and potential #ow theory; the exact displacement function
was derived from the equilibrium equations of the empty shell without initial stresses (e.g.,
initial axial stresses or initial circumferential stresses within the shell due to hydrostatic
pressures).

In this paper, a new "nite-element formulation for initially tensioned orthotropic cylin-
drical shells conveying compressible inviscid #uid is presented on the basis of a three-
dimensional theory of elasticity and the Euler equations. The hydrodynamic pressure is
derived from the Euler equation and the dynamic coupling conditions. A nonlinear
strain}displacement relationship is deployed for deriving the geometric sti!ness matrix,
although the subsequent vibratory analysis is fully linear. Numerical examples of trans-
versely isotropic cylindrical shells in the absence of and containing quiescent and #owing
#uid, and initially tensioned orthotropic cylindrical shells in the absence of and conveying
#uid are presented and discussed.

2. FORMULATION OF THE PROBLEM

2.1. THE SHELL EQUATION

Consider an initially tensioned circular cylindrical shell with internal and external dia-
meters d and D respectively, a thickness h, and a length ¸. The shell material is assumed to
be orthotropic and linearly elastic. The dynamic problem of compressible inviscid #uid-
conveying initially uniaxially stretched cylindrical shells may be formulated in a cylindrical



Figure 1. Schematic diagram of the model.
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polar coordinate system (r, h, x) as shown in Figure 1. The #uid #ow in the shell is steady.
The detailed derivation of the dynamic equations of the coupled #uid}structure interaction
is given by Zhang et al. (2001), but the approach is brie#y summarized below for complete-
ness, with the novel additional considerations of #uid compressibility, initial tension and
orthotropic material properties. The cylindrical polar coordinate system is chosen with the
x-axis along the axis of the shell, and r and h along the radial and circumferential directions,
respectively.

The components of the displacement are denoted by u
x
, uh and u

r
in the axial, tangential

and radial directions, respectively. The dynamic displacement vector in the coordinate
system is expressed as (all symbols are listed for convenience in Appendix A):

u"G
u
x

uh
u
r
H,G

u
x
(x, h, r, t)

uh(x, h, r, t)

u
r
(x, h, r, t)H . (1)

For the local material principal axes 1}2}3 coinciding with the global cylindrical
coordinates, the constituent relationship between the strain and stress vector for an
orthotropic material, obeying the generalized Hook's law, is given by (Lekhnitskii 1963)
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On considering a shell subjected to initial tensions, equations (2) can be rewritten in
matrix form:
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where D represents the orthotropic shell stress}strain matrix in the global coordinate
system, i.e.,

D"

D
11

D
12

D
13

0 0 0

D
12

D
22

D
23

0 0 0

D
13
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23

D
33

0 0 0

0 0 0 D
44

0 0

0 0 0 0 D
55

0

0 0 0 0 0 D
66

, 4)

where components D
ij

in D are given in Appendix B. For an isotropic material, this
constitutive relationship matrix takes the form
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For a geometrically nonlinear analysis, the strain vector in the cylindrical polar coordi-
nate (x, h, r) system is given by
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where eL and eNL are de"ned by (Zienkiewicz & Taylor 1991)
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Upon setting b"Mb
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NT, the linear and nonlinear parts of

the Green strain vector can be rewritten as

eL"H1b and eNL"1
2

H2 b, (8)

where H1, H2 and b are given in Appendix B.
At #uid}structure interfaces, surface traction exerted on the shell wall can be separated

into two parts, one due to steady hydrostatic pressures and the other due to hydrodynamic
pressures. The strain energy of the shell and the energy of external forces on the shell are
given, respectively, by

<(u)"
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2 PX
5

eTDedX
5
and =(u)"PX

5

uTqtuK dX
5
!PC

5

uT(pt#qt) dC
5
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where the dot represents the derivative with respect to time.
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The total potential energy of the shell is therefore given by
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Applying the d'Alembert principle (Bittnar & Sejnoha 1996), the following equation can be
obtained:
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5
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2.2. THE FLUID EQUATION

Consider an isotropic and compressible inviscid #uid occupying a region X
&
within a cylin-

drical shell with boundary C
&
, and neglect the #uid gravity force. It is assumed that the

lateral pressure which induces the circumferential stress is constant directional: the direc-
tion and magnitude per unit original area remain unchanged during deformation. It is also
assumed that perturbation originating in the shell oscillation is small at both inlet and
outlet of the shell and so can be neglected. The present analysis of the inviscid #uid #ow in
the oscillating shell is based on the Eulerian equation in the cylindrical polar coordinate
system (r, h, x), viz.

v5 #v ' $v"!(1/o
&
)$p in X

&
, (12)

and on the continuity equation

$ ' v"pR /K in X
&
. (13)

Combining equations (12) and (13) we obtain the following equation:

+2p!(1/a2
&
)p(#o

&
$' (v ' $v)"0 in X

&
. (14)

2.3. BOUNDARY CONDITIONS

The motion of the shell wall and #uid are fully coupled by velocities, accelerations and
pressures normal to the #uid}structure interface. Restrictions are added so that the #uid
particles adhere normal to the #uid}structure interface, i.e.,

n ' (du/dt!v)"n ' (u5 #;u
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, (15a)

n ' (d2u/dt2!dv/dt)"n ' [uK#2;u5
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,ss
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5
WC

&
, (15b)

where d/dt and d2/dt2 are the "rst- and second-order material derivatives, respectively;
u
,s
,Lu/Ls; ds"[(dx)2#(rdh)2#(dr)2]1@2. Given the assumption that perturbations ori-

ginating from the shell oscillation at both inlet and outlet of the shell are negligible, the
following kinematic conditions at the inlet and outlet of the shell are imposed:

dv/dt"0, at x"0 and ¸. (15c)

In addition to the kinematic boundary conditions, continuity of traction at the #uid}shell
interfaces and restriction at inlet and outlet of the shell are imposed, i.e.,

(pt#pf)"0 on C
5
WC

&
, (16a)
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n ' dv/dt"!(1/o
&
) (Lp/Ln) on C

5
WC

f
, (16b)

dv/dt"!(1/o
&
)$p at x"0 and ¸. (16c)

3. METHOD OF SOLUTION

3.1. SHELL DOMAIN

The variables u (x, h, r, t) in equation (11) are expanded isoparametrically. The shell dis-
placement "eld and its variation, du (x, h, r, t), are approximated by

u (x, h, r, t)"G
u
x

uh
u
r
H"G

Nt u6 x
Nt u6 h
Nt u6 rH"NTu6 ,

(17)
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duh
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r
H"G

d (Nt u6 x)

d (Ntu6 h)
d(Ntu6 r)H"du6 TNT

T,

which are continuous. Here u6 is the nodal displacement vector, i.e., u6 "Mu6
x
, u6 h, u6 rNT; Nt is the

shape-function matrix; NT is the assembled shape-function matrix, given in Appendix B.
Upon setting db"Gdu6 , equation (8) can be rewritten in variational form as

deL"H1Gdu6 "BLdu6 , and deNL"H2Gdu6 "BNL du6 . (18)

In the above, the linear strain}displacement matrix, BL, the nonlinear strain}displacement
matrix, BNL, and G are given in Appendix B.

The standard discretization processes result in the form
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where the matrices G and S are given in Appendix B.
Equation (19) can be rewritten in the following form:

mtu6G#(kt (L)#kt (NL))u6 !sT
1p"f e

t . (20)

It is important to note that deploying the nonlinear strain}displacement relationship is
necessary to account for the e!ect of initial strain/stress on the sti!ness of the system. In the
subsequent analysis for small vibration, the nonlinear sti!ness matrix, kt (NL), is neglected.

3.2. FLUID DOMAIN

Upon applying a "nite element method to the #uid equation, equation (14) can be reduced
to a matrix equation in terms of coe$cients representing the pressure matrix p at the nodal
points of the "nite-element mesh, respectively. The #uid domain is divided into "nite-
element sub-domains for the pressure "eld. The pressure "eld can be approximated in terms
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of vectors of nodal pressures, viz.

p(x, h, r, t)"Nf p, dp(x, h, r, t)"dpTNT
&
. (21)

Applying a variational statement to equations (14)} (16), and neglecting nonlinear convec-
tion terms, the following equation is obtained:
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Upon substituting equations (17) and (21) into equation (22), the following equation for one
element in the global coordinate system can be obtained:
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3.3. COUPLING EQUATION

Upon assembling shell elemental matrices, the following equation governing the motion of
the shell can be obtained:

C
Mtt Mtb

Mbt MbbDG
UG t

UG bH#C
Ktt Ktb

Kbt KbbDG
Ut

UbH#C
0 0

0 ST
1DG

0

PbH"G
Ft

FbH, (25)

where MUT
t , U

T
bNT and MUG Tt , UG TbNT are the global displacement and acceleration vectors,

respectively; and

C
Mtt Mtb

Mbt MbbD and C
Ktt Ktb

Kbt KbbD
are the shell global mass and sti!ness matrices, respectively.

Similarly, assembling #uid elemental matrices in the global coordinate system, we can
obtain the equation governing the motion of the #uid:

C
Aff Afb

Abf AbbDG
Pf

PbH#C
Eff Efb

Ebf EbbDG
PG f

PG bH#C
0 0

0 S1DG
0

UG bH#C
0 0

0 S2DG
0

U0 bH
#C

0 0

0 S3DG
0

UbH"G
0

0H, (26)

where MPT
t , P

T
bNT is the global nodal pressure vector;

C
Aff Afb

Abf AbbD and C
Eff Efb

Ebf EbbD
are integral coe$cient matrices of #uid pressures and the second-order derivative of #uid
pressures with respect to time, respectively.



60 Y. L. ZHANG, J. M. REESE AND D. G. GORMAN
If the external force terms can be expressed as F"MFT
t , F

T
bNT"F0 eu./5, the solution will

exist in the same form, i.e.

U"MUT
t , U

T
bNT"U0eu./5 and P"MPT

t , P
T
bNT"P0eu./5. (27)

Substituting equation (27) into (26) and setting
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./

Ebf Abb#u2
./

EbbD
~1
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the following equation is obtained:

Pb"H~1bb S1UG b#H~1bb S2U0 b!H~1bb S3Ub"H~1bb (u2
./

S1#u
./

S2#S3)Ub, (28)

where H~1bb is a frequency-dependent matrix.
Substituting equation (28) into equation (25) leads to

Au2
./C

Mtt Mtb

Mbt Mbb#MfD#u
./C

0 0

0 CfD#C
Ktt Ktb

Kbt Kbb#KfDBG
Ut

UbH"G
Ft

FbH, (29)

where Mf, Cf and Kf are the frequency-dependent hydrodynamic mass, damping and
sti!ness matrices associated with the inertia, Coriolis and centrifugal forces, respectively.
For the case of incompressibility, these mass, damping and sti!ness matrices are frequency
independent.

4. RESULTS AND DISCUSSION

To the authors' knowledge, there are no published experimental results on the vibration of
orthotropic shells. Our new model has therefore been compared with the results of previous
and established analyses to assess its validity, and only after this veri"cation was it "nally
applied to orthotropic shells conveying #uid. We have explored the e!ects of #owing #uid
and di!erent orthotropic material properties on the vibration of the system, and have been
able to demonstrate the usefulness of our approach to this modelling.

In all subsequent calculation examples, the three principal directions of elasticity coincide
with the directions of the axes. A convergence study has been conducted for isotropic
cylindrical shells conveying #uid by Zhang et al. (2001). For isotropic thin cylindrical shells
conveying #uid at a circumferential wavenumber n"2 and longitudinal half-wavenumber
m"3, natural frequencies converge to less than 0)2% error for a system which is discretized
into 20]1 "nite elements (axial]radial) for the shell domain and 20]4 "nite elements for
the #uid domain, respectively. A similar convergence analysis has also been conducted
for initially tensioned orthotropic cylindrical shells conveying #uid, but not presented here
for reasons of conciseness. For orthotropic cylindrical shells conveying #uid with a thick-
ness}radius ratio h/R"0)3, frequencies can stabilize with a relative error less than 0)2% for
a system which is discretized into 20]3 for the shell domain and 20]4 for the #uid domain.

We "rst considered transversely isotropic cylindrical shells in the absence of and contain-
ing #uid. The free vibration of this system was analysed using the material properties
outlined in Table 1, which were also used by Jain (1974) and Chen & Ding (1999). When
considering the #uid-"lled system, the following physical data are used to capture and
exemplify signi"cant features: o

5
"7130 kg/m3, o

&
/o

5
"0)091 and a

&
/a

5
"0)3. These shells

are simply supported at both ends. Two cases, (i) the shells in the absence of and (ii)
containing compressible #uid, were analysed for vibration modes with a circumferential
wavenumber n"2 and axial half-wavenumber m"1.



TABLE 1
Material properties of the zinc cylindrical shells

Material Elastic constants (Nm~2)

Transversely D
22
"D

33
"1)5825]1011 D

11
"0)6160]1011

isotropic (Zinc) D
12
"D

13
"0)4744]1011 D

23
"0)3151]1011

D
44
"D

66
"0)40]1011 D

55
"0)6337]1011

TABLE 2
Comparison of the lowest dimensionless natural frequencies obtained from the present model with
existing theoretical results for a simply-supported #uid-"lled zinc cylindrical shell at mR/¸"0)4 and

n"2

Dimensionless natural frequencies uN
./

"u
./

R(o
5
/D

66
)1@2

(aN , oN ) h/R Classical
shell theory
(Dong 1968)

Analytical
model (Chen
& Ding 1999)

Five-mode
shell theory
(Jain 1974)

Six-mode shell
theory

(Mirsky 1964)

Present
FE

model

(0, 0) 0)01 0)302159 0)301727 0)301748 0)301773 0)30285
0)05 0)326250 0)316059 0)316552 0)31743 0)32041
0)10 0)391960 0)356556 0)358234 0)35915 0)35915

(0)2, 0)1) 0)01 0)152701 0)143356 0)152733 0)143191 0)14451
0)05 0)256069 0)241767 0)249875 0)241706 0)24834
0)10 0)338637 0)305744 0)312881 0)307336 0)31217

(0)3, 0)1) 0)01 0)153812 0.144480 0)153834 0)144312 0)14511
0)05 0)258922 0)244716 0)252351 0)244683 0.24984
0)10 0)343301 0)309565 0)315929 0)311333 0)31935

(0)2, 0)3) 0)01 0)097676 0)090686 0)097720 0)090559 0)09056
0)05 0)195370 0)181591 0)191098 0)181150 0)18509
0)10 0)280389 0)250970 0)260604 0)251222 0)25572

(0)5, 0)4) 0)01 0)079785 0)079901 0)086242 0)079875 0)07932
0)05 0)166670 0)167164 0)176399 0)166670 0)16741
0)10 0)238486 0)238442 0)247810 0)238486 0)23696
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The comparison of the predicted results obtained by our model and those obtained from
the "ve-mode shell theory (Jain 1974), the analytical model (Chen & Ding 1999), the
classical shell theory (Dong 1968) and the six-mode shell theory (Mirsky 1964), is presented
in Table 2. It can be seen from the table that there is a good agreement between our theory
and the other results obtained using the "ve- and six-mode theories and the analytical
model of Chen & Ding. This demonstrates the validity of the present model for the cases of
transversely isotropic cylindrical shells in the absence of, and containing, #uid.

It can be seen that for the thin shells containing compressible #uid, the frequencies
obtained using the present model are closer to those obtained using the six-mode shell
theory than the "ve-mode shell theory. This is due to the neglect of transverse normal strain
in the "ve-mode shell theory. It also can be seen that for a moderately thick shell (i.e.,
h/R'0)05), there is a large relative error in frequencies obtained using the classical shell
theory and the other four shell theories. Hence, the classical shell theory is not applicable to
even slightly thick shells containing #uid. As expected, natural frequencies decrease as #uid



Figure 2. Transversely isotropic shell: variation of natural frequencies with thickness-to-radius and radius-to-
length ratios at circumferential wavenumber n"2: - - - - -, theoretical results (Jain 1974); **, present model. (a)

Empty shell; (b) #uid-"lled shell.
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densities increase. For oN "o
&
/o

5
"0)1, natural frequencies increase by 1)0}1)5% when the

#uid compressibility decreases by 55)5%.
For the shell in the absence of and containing incompressible #uid (water), the dimension-

less natural frequencies uN
./

"u
./

RMo
5
/(D

11
!D2

13
/D

33
)N1@2 are shown in Figure 2. It can

be seen that natural frequencies obtained using the present FE model generally agree well
with the theoretical results obtained by using the "ve-mode shell theory (Jain 1974). But for
the case of #uid-"lled shells with R/¸"1)0, the di!erence in frequency obtained using the
present model and the "ve-mode shell theory reaches around 20%. This is probably due to
too few mode terms being used in the application of the Rayleigh}Ritz method for the
coupled dynamic problem of short cylindrical shells. However, as expected, frequencies
increase as thickness-to-radius and radius-to-length ratios increase. It can also be seen that
the presence of #uid lowers the frequencies more signi"cantly for thin shells than for thick
shells.

The e!ect of initial compression forces on the natural frequencies of an empty orthotropic
cylindrical shell has also been analysed. The following material properties, in the shell
material principal axes, were considered: E

1
"1727 GPa, E

2
"7)2 GPa, l

12
"0)26,

G
12
"G

13
"G

23
"3)76 GPa, o

5
"1550 kg/m3, R/h"25, ¸/R"4. For such thin shells, it

is assumed that p
rr

is equal to zero. Figure 3 shows the comparison of dimensionless natural
frequencies, uN

./
"u

./
¸(o

5
/E

2
)1@2, obtained using the present model with the theoretical

results of Sivadas (1995) under various dimensionless axial compression forces,
¹M "¹

x
(1!l2

12
)/E

2
Rh. It can be seen from this "gure that frequencies decrease as compres-

sion forces increase, as expected, and the results of our model agree well with the theory of
Sivadas (1995).

In the next set of calculations, the following dimensionless #ow velocities, ;M "l
0
/l

!
and

natural frequencies, uN
./

"u
./

/u
!

were adopted, where l
!

and u
!

are given by
l
!
"[E/o

4
(1!l2)]1@2 and u

!
"(1/R)ME/o

4
(1!l2)N1@2. The e!ect of internal #uid #ow on

the dynamic behaviour of thin cylindrical shells was investigated, with physical properties
corresponding to those of a latex rubber cylindrical shell conveying air, which has been
tested experimentally by PamKdoussis & Denise (1972). The physical properties are:
o
5
"850 kg m~3, E"8)957]105 Nm~2, l"0)5, o

&
/o

5
"0)00136, R/h"44)1 and

¸/R"3)225!32)35.
Dimensionless critical #ow velocities, ;M , for the onset of #utter of the cylindrical shell

clamped at one end and free at the other end were calculated and compared with



Figure 3. Empty orthotropic shell: comparison of dimensionless natural frequencies obtained from present
model with theoretical results: **, present model; - - - - -, theory (Sivadas 1995).

Figure 4. Comparison of present numerical results with experimental results for cylindrical shells with clam-
ped}clamped boundary conditions: s, experiment (PamKdoussis & Denise 1972); **, present model.
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experimental results (PamKdoussis & Denise 1972), as shown in Figure 4. It can be seen from
this "gure that critical #ow velocities obtained by using the present method generally agree
reasonably with experiment, although for ¸/R(15 the di!erence between experiment and
theory is quite large. This is also re#ected in the comparison of PamKdoussis & Denise's
analytical and experimental results.

Given this good agreement with previous results, the next calculation examined the e!ect
of #uid #ow velocities on the free vibration of zinc cylindrical shells conveying water. The
material properties from the "rst example were again used. Figures 5 and 6 show the
variation of dimensionless natural frequencies, uN

./
"u

./
RMo

5
/(D

11
!D2

13
/D

33
)N1@2, with

dimensionless #ow velocities ;M ";(o
5
/D

66
)1 @ 2, for a circumferential wavenumber n"2

and longitudinal half-wavenumber m"1, 2. It can be seen that natural frequencies decrease
with increasing #ow velocity, as expected. It also can be seen from these "gures that
dimensionless critical velocities increase as thickness-to-radius and radius-to-length ratios
increase. Natural frequencies also increase with increasing initial axial tension.

The "nal calculation analysed the e!ect of material properties on the natural frequency of
the system. We considered a #uid-conveying initially-tensioned orthotropic cylindrical shell
simply supported at both ends with the following physical data: D

11
/D

66
"10, 3)75, 1)5,



Figure 5. Transversely isotropic shell conveying water: e!ect of thickness-to-radius ratio on the dimensionless
natural frequency at R/¸"0)4 and n"2: **, ¹M "0; - - - - - -, ¹M "0)06.

Figure 6. Transversely isotropic shell conveying water: e!ect of thickness-to-radius ratio on the dimensionless
natural frequency at ¹M "0)06 and n"2: **, R/¸"0)6; - - - - -, R/¸"0)4.
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D
22
"4)0D

66
, D

12
"1)25D

66
, D

13
"1)0D

66
, D

23
"0)75D

66
, D

33
"3)75D

66
, D

44
"1)75D

66
,

D
55
"1)75D

66
, o

&
/o

5
"0)14, R/¸"0)4, R/h"20. Figure 7 shows the variation of dimen-

sionless natural frequency with #uid-#ow velocity for the three values of D
11

/D
66

, for
a circumferential wavenumber n"2 and longitudinal half-wavenumber m"1, 2. It can be
seen that the bigger the value of D

11
/D

66
(which corresponds to the axial sti!ness) the larger

the critical #ow velocity. All the curves display the previous trend of natural frequencies
decreasing with increasing #uid-#ow velocities. Figure 8 shows the variation of dimension-
less natural frequency for the "rst three longitudinal half-wavenumbers with the circum-
ferential wavenumber (which is taken as a continuous variable). It can be seen that the
minimum natural frequency occurs at n"3 and m"1 regardless of the value of D

11
/D

66
It

may be noted that for D
11

/D
66
"1)5, the natural frequency at vibration mode m"3 and

n"1 is smaller than that at vibration mode m"3 and n"2. This is due to the low axial
sti!ness.

5. CONCLUSIONS

A "nite-element formulation for the vibration of initially tensioned orthotropic
cylindrical shells conveying compressible inviscid #uid has been presented. A nonlinear



Figure 7. Orthotropic shell conveying #uid: variation of dimensionless natural frequency with #uid #ow velocity
at dimensionless initial axial tension ¹M "0)06 and circumferential wavenumber n"2:**, D

11
/D

66
"10;**,

D
11

/D
66
"3)75; - - - - -, D

11
/D

66
"1)5.

Figure 8. Orthotropic shell conveying #uid: variation of dimensionless natural frequency with circumferential
wavenumber at dimensionless initial axial tension ¹M "0)06 and #uid #ow velocity ;M "0)2: **, D

11
/D

66
"10;

**, D
11

/D
66
"3)75; - - - - - -, D

11
/D

66
"1)5.
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strain}displacement relationship was employed to derive the geometric sti!ness matrix due
to initial stresses and hydrostatic pressures. Frequency-dependent #uid mass, damping and
sti!ness matrices associated with inertia, Coriolis and centrifugal forces, respectively, were
derived given the #uid}structure coupling condition. The method is based on the three-
dimensional theory of elasticity and Euler's equation. Numerical examples were given to
demonstrate that the present model can be readily applied to the coupled dynamic problem
of initially tensioned orthotropic thin or thick cylindrical shells conveying #uid with
reasonable accuracy.

It was shown that natural frequencies increase as thickness-to-radius and radius-to-
length ratios and initial axial tensions increase, or #uid #ow velocities and #uid densities
decrease, as expected. It was also shown that natural frequencies increase slightly as #uid
compressibility decreases. The e!ect of #uid compressibility on natural frequency can,
however, be neglected for a larger #uid density, for example oN "0)1. For orthotropic shells
conveying #uid, the larger the axial sti!ness, the larger the critical #ow velocity. Minimum
natural frequency occurs at a certain vibration mode, regardless of the axial sti!ness for all
the cases examined. It is interesting to note that when the minimum natural frequency
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occurs at the third circumferential wavenumber (n"3), natural frequencies at n"1 may be
smaller than that at n"2 for low axial sti!ness.

The model developed here is capable of handling the in#uence of variation in thin/thick
shell geometrical and material parameters, and the e!ect of #uid #ow velocities, hydrostatic
pressures and initial tension/compression on the dynamic behaviour. In the course of
establishing the model, nonlinear shell sti!ness terms and #ow convection terms were
neglected. Also, the lateral #uid pressure is assumed to be constant directional, and
perturbations originating from the shell oscillation at both inlet and outlet of the shell were
assumed to be negligible. These are limitations in this vibratory analysis, as it stands. Future
e!ort will be directed to incorporating variable lateral pressure, in terms of direction and
magnitude per unit area, #uid convection terms and nonlinear sti!ness terms, and examin-
ing the e!ect of nonlinearity on the vibration.
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APPENDIX A. NOMENCLATURE

a
&
, a

5
sound velocity in the #uid and elastic wave velocity of the shell,
respectively, i.e. a

5
"(D

44
/o

5
)1@2, a

&
"(K/o

&
)1@2

aN aN "a
&
/a

5
a integral coe$cient matrix of #uid pressure, de"ned by equation (24a)
Abb integral coe$cient of the pressure over the #uid}strucutre interface
Afb integral coe$cient of the pressure over the #uid domain adjacent to

the #uid}structure interface, i.e. Afb"AT
bf

Aff integral coe$cient of the pressure over the #uid domain excluding
the #uid boundary domain adjacent to the #uid}structure interface

BL, BNL linear and nonlinear strain}displacement matrices, respectively
Cf #uid damping matrix associated with the Coriolis force, i.e.

Cf"ST
1H~1bb S2

d, D internal and external diameters, respectively
D

ij
nine independent elastic constants, de"ned by equation (AII.1)

D shell stress}strain matrix de"ned by equations (4) and (5)
e integral coe$cient matrix of the second-order derivative of #uid

pressure, de"ned by equation (24a)
E Young's modulus
E
1
, E

2
Young's moduli in material principal axes, respectively

E
xx

, Ehh, E
rr

Young's moduli in the axial, tangential and radial directions, respec-
tively

Ebb integral coe$cient of the second-order derivative of pressure with
respect to time over the #uid}structure interface

Efb integral coe$cient of the second-order derivative of pressure with
respect to time over the #uid domain adjacent to the #uid}structure
interface, i.e. Efb"ET

bf

Eff integral coe$cient of the second-order derivative of pressure with
respect to time over the #uid domain excluding the #uid boundary
domain adjacent to the #uid}structure interface

f e
t vector of the elemental nodal external forces exerted on the shell
MFT

t , FT
bN vector of the global nodal external force exerted on the shell

G shear modulus
G

12
, G

13
, G

23
shear moduli in material principal axes, respectively

G
xh, G

rx
, Gh3 shear moduli which characterize the variation of the angles in the

directions x and h, r and x, and h and r, respectively
G matrix de"ned by equation (AII.5)
h shell thickness
H1, H2 matrices de"ned by equations (AII.2) and (AII.3)
I3 unit matrix of order 3
kt elemental shell sti!ness matrix, i.e. kt"kt(L)#kt(NL)

K bulk modulus of the #uid
Kf #uid sti!ness matrix associated with the centrifugal force, i.e.

Kf"ST
1H~1bb S3.
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¸ shell length
m, n mth longitudinal and nth circumferential vibration modes, respec-

tively
m

5
elemental shell mass matrix, respectively

Mf #uid mass matrix associated with the inertia force, i.e. Mf"ST
1H~1bb S1

n unit outward vector normal to the #uid-structure interface (from the
shell into the #uid)

Nt, Nf matrices of shape function for the shell and #uid, respectively
NT matrix de"ned by equation (B.6)
p
0

hydrostatic pressure
p #uid pressure
p vector of nodal #uid pressure
pf stress tensor exerted on the #uid at the #uid}structural interfaces
pt, qt vectors of the prescribed shell boundary traction arising from

#uid}structure interface interaction and external forces, respectively;
Pb generalized global nodal radial traction vector due to #uid pressures
Pf generalized global nodal #uid pressure vector for #uid elements

excluding #uid}structure boundary elements.
R shell mean radius
s1, s2, s3 matrices de"ned by equation (24a,b)
S matrix de"ned by equation (B.6)
S1, S2, S3 integral matrices over the #uid}structure interface, respectively
t time
t unit vector tangential to the pipe surface
¹

x
, ¹M dimensional and dimensionless axial forces, respectively

u
x
, uh, u

r
axial, tangential and radial displacements, respectively;

; #uid scalar velocity
;M dimensionless #ow velocity
u dynamic displacement vector of the shell
u6 nodal displacement vector, i.e., u6 "MuN

xi
, uN hi, u6 ri, ui

, u6
xj
, uN hj, uN rj, uj

NT
U global generalized displacement vector
Ub, Ut vectors of the generalized radial global nodal displacements for the

shell elements adjacent to the #uid domain and the generalized
global nodal displacement vector excluding radial nodal displace-
ment for shell elements adjacent to the #uid domain

v #ow velocity vector, i.e. v"l
r
i#lhj#l

x
k

<(u) strain energy of the shell
=(u) energy of external forces on the shell
b
i

de"ned by equation (AII.4), (i"1, 2, 2, 9)
c
xh, ch3, c

rx
shear strain components in cylindrical coordinates

C
5
, C

&
shell and #uid boundary, respectively

C
5
WC

&
shell and #uid-sharing boundary

e, e0 strain and initial strain vectors of the shell, respectively
e
xx

, ehh, e
rr

strain components in cylindrical coordinates
l Poisson ratio
lh9, l

xr
, l

rh Poisson coe$cients which characterize tensions (compressions) in
the x-, r- and h-direction for compressions (tensions) in the h-, x- and
r- directions, respectively

P total potential energy of the shell
o
5
, o

&
densities of the shell and #uid, respectively
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qt shell inertia force}acceleration matrix
oN oN "o

&
/o

5
r, r0 stress and initial stress vectors, respectively, i.e.

r0"Mp0
xx

, p0hh, p0
rr
, q0

xx
, q0hh, q0rrNT

p
xx

, phh, p
rr

stress components in cylindrical coordinates
q
xh, qhr, q

rx
shear stress components in cylindrical coordinates

u
./

, uN
./

dimensional and dimensionless frequencies, respectively
$ $"(L /Lr)i#(L/rL h)j#(L/Lx)k
X

5
, X

&
shell and #uid spatial domains, respectively

Subscripts
L, NL linear and nonlinear components, respectively
m, n mth longitudinal and nth circumferential vibration modes, respec-

tively
t, f shell and #uid quantities, respectively

Superscript
T transpose of matrix

APPENDIX B. LIST OF MATRICES

For an orthotropic material, components,D
ij
, are given by

D
11
"E

xx
(1!lhrlrh)/N; D

22
"Ehh(1!l

xr
l
rx
)/N; D

33
"E

rr
(1!l

xhlhx)/N;

D
44
"G

xh; D
55
"Ghr; D

66
"G

xr
; D

12
"E

xx
(lhx#l

rx
lhr)/N;

D
13
"E

xx
(l

rx
#l

rx
lhx)/N; D

23
"E

xx
(l

rh#l
rx
l
xh)/N;

and N"1!l
xhlhx!l

rhlhr!l
rx
l
xr
!2lhxlxrlrh. (B.1)

For a transversely isotropic material whose behaviour is independent of direction in the
plane x"0, D

22
"D

33
, D

12
"D

13
, D

44
"D

66
, and D

55
"1

2
(D

33
!D

23
).

The matrices, H1 and H2, are given by

H1"

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1

, (B.2)

H2"

b
1

0 0 0 b
5

0 0 b
8

0

0 b
2

0 b
4

0 b
6

0 0 0

0 0 b
3

0 0 0 b
7

0 b
9

0 b
5

0 b
1

0 b
8

0 0 0

0 b
7

0 b
9

0 b
3

0 0 0

0 0 b
8

0 0 0 b
5

0 b
1

. (B.3)
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The components b
i
(i"1,2, 9) in the matrix b are

b
1
"u

x,x
, b

2
"(uh,h#u

r
)/r, b

3
"u

r, r
, b

4
"u

x,h/r, b
5
"uh,x,

b
6
"(u

r,h!uh)/r, b
7
"uh, r, b

8
"u

r,x
, b

9
"u

x,r
. (B.4)

The matrices G, NT and S are given respectively by

G"

NT

5,x
0 0 NT

t,h/r 0 0 NT
t, r 0 0

0 NT
t,x 0 0 NT

t,h/r !NT
t /r 0 NT

t, r 0

0 0 NT
t,x 0 NT

t /r NT
t,h/r 0 0 NT

t, r

T

. (B.5)

NT"

Nt 0 0

0 Nt 0

0 0 Nt

, S"

p0
xx

I3 q0
xhI3 q0

xr
I3

q0
xhI3 p0hhI3 q0hrI3

q0
xr
I3 q0hrI3 p0

rr
I3

. (B.6)

The linear and nonlinear strain}displacement matrices,BL, BNL, are given respectively by

BL"H1G"

LNt/Lx 0 0

0 LNt/rLh Nt/r

0 0 LNt/Lr

LNt/rLh LNt/Lx 0

LNt/Lr 0 LNt/Lx

0 LNt/Lr!Nt/r LNt/rLh

, (B.7)

BNL"H2G

"

u
x,x

Nt,x uh,xNt,x u
r,x

Nt,x

[u
x,hNt,h#(u

x
#uh,h)Nt]/r2 [(uh,h#u

x
)Nt,h#(uh!u

r,h)Nt]/r2 (u
r,h!uh)Nt,h/r2

u
x,r

Nt, r uh, rNt, r u
r,r

Nt, r

(2/r)u
x,hNt,x (2/r)(uh,h#u

r
)Nt,x (2/r)(u

r,h!uh)Nt,x

(2/r)u
x,hNt, r (2/r)(uh,h#u

r
)Nt, r (2/r)(u

r,h!uh)Nt, r

(2/r)u
x,r

Nt,x (2/r)u
x,r

Nt,x (2/r)u
r, r

Nt,x

.

(B.8)
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